Relative loss bounds for single neurons

نویسندگان

  • David P. Helmbold
  • Jyrki Kivinen
  • Manfred K. Warmuth
چکیده

We analyze and compare the well-known gradient descent algorithm and the more recent exponentiated gradient algorithm for training a single neuron with an arbitrary transfer function. Both algorithms are easily generalized to larger neural networks, and the generalization of gradient descent is the standard backpropagation algorithm. In this paper we prove worst-case loss bounds for both algorithms in the single neuron case. Since local minima make it difficult to prove worst-case bounds for gradient-based algorithms, we must use a loss function that prevents the formation of spurious local minima. We define such a matching loss function for any strictly increasing differentiable transfer function and prove worst-case loss bounds for any such transfer function and its corresponding matching loss. For example, the matching loss for the identity function is the square loss and the matching loss for the logistic transfer function is the entropic loss. The different forms of the two algorithms' bounds indicates that exponentiated gradient outperforms gradient descent when the inputs contain a large number of irrelevant components. Simulations on synthetic data confirm these analytical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating a Bounded Normal Mean Relative to Squared Error Loss Function

Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...

متن کامل

Stochastic bounds for a single server queue with general retrial times

We propose to use a mathematical method based on stochastic comparisons of Markov chains in order to derive performance indice bounds‎. ‎The main goal of this paper is to investigate various monotonicity properties of a single server retrial queue with first-come-first-served (FCFS) orbit and general retrial times using the stochastic ordering techniques‎.

متن کامل

Worst-case Loss Bounds for Single Neurons

We analyze and compare the well-known Gradient Descent algorithm and a new algorithm, called the Exponentiated Gradient algorithm, for training a single neuron with an arbitrary transfer function . Both algorithms are easily generalized to larger neural networks, and the generalization of Gradient Descent is the standard back-propagation algorithm. In this paper we prove worstcase loss bounds f...

متن کامل

Some properties of the parametric relative operator entropy

The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...

متن کامل

Relative Expected Instantaneous Loss Bounds

In the literature a number of relative loss bounds have been shown for on-line learning algorithms. Here the relative loss is the total loss of the on-line algorithm in all trials minus the total loss of the best comparator that is chosen off-line. However, for many applications instantaneous loss bounds are more interesting where the learner first sees a batch of examples and then uses these e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 1999